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Overview

Climate extremes

Lamd Surface Temperatisre Anomaly

Figure: July 20-27 2010 temperature departures relative to 2000-2008
baseline, from the Washington Post
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Overview

Analysis of climate extremes

@ Other examples: 2003 European heat wave, 2011 Texas
drought/heat wave, 2011 Mississippi River flooding, 2000
English floods, 2011 Thailand floods

o Climate scientists are interested in detecting, attributing, and
projecting changes in extremes.
e This involves analyzing the observational record and climate
model output (both hindcasts and forecasts).

@ My focus here is on continuous outcomes, but changes in
event frequency and intensity (hurricanes, tornados, storm
surges, etc.) are of great general interest.
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Overview

Statistical extreme value theory

@ The Generalized Extreme Value (GEV) distribution:

o=~ ree (5] )

o Location parameter p, scale parameter o, shape parameter &,
generally fit via ML.
@ Unites three distributions:

@ ¢ < 0: Weibull distribution; bounded to the right
@ ¢ = 0: Gumbell distribution; exponential tail
© ¢ > 0: Frechet distribution; heavy tail

@ Asymptotic theory says that the distribution of block maxima
(or minima) converges to the GEV distribution as the block
size goes to infinity.

@ This provides a statistically rigorous way to analyze extremes
and estimate probabilities of extreme events.
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Overview

Example: Berkeley, CA winter precipitation

max. winter daily precip.
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Overview

Return values (levels)

@ A 100-year flood is the size of flood expected to occur once
every 100 years on average, also called the 100-year return
value. l.e., a tail probability of p = 0.01.

@ By the quantiles of the GEV distribution, the MLE for the
1/p-year return value is:

6- o

p=H— Z (1 — (—log(1 — p))’g)

~

@ Uncertainty can be estimated based on the delta method.

@ Analysis of extremes is necessarily based on limited data and
involves extrapolation, though the asymptotic theory provides
some justification.
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Overview

Nonstationary extreme value analysis

Climate change concerns lead us to investigate whether extremes
are changing over time. Extremes may also vary by season and
with covariates (in particular teleconnections such as ENSO).

@ A basic strategy:

=i (252)] ™)

@ One might have all three parameters vary with time (linearly,
polynomially, or based on splines).

@ Analyses often find little evidence (based on likelihood ratio
tests) that £ (and even o) are varying with time, though & in
particular is hard to estimate even in a stationary model.

@ A basic model is linear in time in p only, as a first-order
estimate of the trend over time.

Chris Paciorek Parallel extreme value analysis 7



Overview

Point process modeling

@ Using block maxima seems wasteful of data. Instead model all
the exceedances over a high threshold, ¢ (e.g., the 95%ile or
99%ile of all rainy days in the data).

@ The point process model specifies the probability of the
number of exceedances (the intensity measure) and the
likelihood of the actual exceedances (the intensity function):

c—u -1/¢
L(p,0,6x1,... %) o exp|—ny, [1+§( - ﬂ .

N(A)

H % [1+£ <X";M>]1/£1

i=1

@ The parameters are equivalent to the GEV parameters and
can be used to compute return values.
@ Asymptotics are with respect to the threshold getting larger.
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Overview

Example: Berkeley, CA winter precipitation

daily precip. (cm)
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Overview

Spatial extreme value analysis

@ Given the sparsity of data and the spatial structure of weather,
an obvious goal is to do a spatial analysis of multiple locations.
e Borrow strength
o Acknowledge joint uncertainty
@ Standard spatial analyses have assumed spatially-correlated
parameters, but conditionally [ID observations.
e Hierarchical Bayesian approaches have been a common
approach: Cooley, Gelfand, Sang, Shaby, and others
e Computation is a big hurdle and MCMC performance can be
poor
@ Analysts often remove consecutive exceedances to reduce
temporal autocorrelation
@ Some recent work on models that allow for spatially-correlated
observations.
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Methodological Approach

Our perspective

@ Given the size of observation and climate model output
datasets and the increasing spatial resolution of models, a
hierarchical modeling strategy fit by MCMC is not practical
for most large-scale and production-mode climate analysis.

@ Our focus:

Location-specific analysis (embarrassingly parallel)
Basic models for temporal change (linear)

Stratify by season rather than modeling seasonality
Work with return values (reduce dimensionality from
parameter space)

Joint uncertainty via bootstrapping

Parallel software development
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Methodological Approach

Bootstrapping

@ By resampling the same blocks at each location, one preserves
the spatial structure and can estimate joint uncertainty

@ Embarrassingly parallel

e Atmospheric oscillations (ENSO, NAO, etc.) operate with
multi-year periodicity and induce within-year and across-year
autocorrelation

e Basic approach is to bootstrap in year-long blocks
e Open question: should one account for longer-term
dependence?
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Methodological Approach

Spatial strategy 1: Multi-stage analysis

@ Given location-specific fits, one can consider a second-stage
analysis of return values estimated at each location, ¥;:

v, = g(S,') + €;

with g(-) specified as a Gaussian spatial process and Cov(e)
based on bootstrap.

@ Similar to meta analyses and spatial smoothing of air
pollution time series results

@ Some unpublished work by Richard Smith on this.
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Results

Location-specific fits

1950-2007 change in 20-year
return value of daily max. temperatures
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Results

Bootstrap-based uncertainty and spatial dependence

daily max. temperature winter daily precipitation
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Results

Multi-stage analysis

Unsmoothed return value change for temperature Unsmoothed return value change in summer precip. (cm)

Comments: Temperature kriging has little effect.
Precipitation kriging based on diagonal of bootstrap covariance.
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Results

Local likelihood bandwidth selection

Hold out 10% of stations (approximately 550), estimating
parameters from neighboring stations.

Bandwidth selection via cro:
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Results

Local likelihood fits

1949-2010 change in 20-year return value, winter precip. 1949-2010 change in 20-year return value, summer precip.

bootstrap-based z score, winter bootstrap-based z score, summer
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Results

Local likelihood uncertainty

winter precipitation summer precipitation
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Results

Open questions

@ How use bootstrap-based error covariance in a second-stage
smoothing context?

@ How should we display and assess joint uncertainty?

@ Would the False Discovery Rate approach be helpful for
assessing the collection of z-scores, particularly given the
larger bootstrap standard errors?
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Parallel Computation

R software development

@ The ismev package (accompanying the Coles books
“Introduction to Statistical Modeling of Extreme Values”) fits
GEV and Point Process models, with a general X3 form for
all three parameters

@ | am building the following capabilities on top of the ismev
functionality:

Handling missing values in point process modeling (common in
observational data), assuming MAR missingness

Fitting point process models given only the exceedances; this
greatly speeds computation

o Calculating return values
o Including delta-method-based uncertainty for return values and

differences in return values

e Including block bootstrap capability
o Allowing local likelihood fitting
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Parallel Computation

Parallel software deployment

@ An LBNL/LLNL/ORNL/LANL team is developing climate data
analysis tools within the context of the Vislt parallel visualization
software (developed at the national labs).

@ The core idea is to allow for extremes analysis in Vislt (and also in
the new UV-CDAT software) by calling R functionality.

@ Vislt will handle (in parallel) data input/output, calendaring, data
reduction to block maxima or exceedances, mobilizing multiple R
instances, collection of location-specific results, and visualization.

e Vislt's VtK data structures passed to R
e R code called by VtK

@ R will handle location-specific model specification, likelihood
maximization, calculation of return values, and bootstrapping
uncertainty.
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